:::: MENU ::::
  • Bienvenido a CircuitBoom

  • Fácil

  • Rápido

domingo, 6 de octubre de 2019



Voltage control circuit


To control the voltage between the electrodes we use the circuit shown in Fig 1. The device can use an 8-bit voltage digital to analog converter (VDAC) or a 12-bit Dithering VDAC (DVDAC). The DVDAC is comprised of an 8-bit VDAC where the voltage of the DAC is quickly switched between 2 values. This makes the output the weighted average of the values written, which can be used to increase the resolution of the DAC. This switching causes noise on the output of the DVDAC so that a small capacitor (100 nF) has to be placed on its output to smooth out the voltage. Depending if the user has installed the external capacitor or not, they can choose what DAC to use to drive the common electrode by using an analog multiplexer (AMux) to select the DAC. The user interface asks the user if the DVDAC capacitor was installed and programs the device accordingly. The user’s choice is then saved in the electrically erasable programmable read-only memory (EEPROM). An operational amplifier (Opamp) is used to buffer the voltage and to provide feedback from the reference electrode [35,36]. The build in Opamp has a bandwidth of 3 MHz [37]. The device can be operated in the standard 3 electrode mode or in a 2 electrode mode by setting the appropriate channel on the electrode AMux, which can be done through the user interface. This circuit will pass current through the common electrode pin until the voltage on the reference electrode pin is the same voltage as the DAC. The DAC’s voltage is set by the firmware depending on the electrochemical parameters inputted into the device.


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201353
A call-to-action text Contact us